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Abstract

A numerical method for the simulation of microstructure evolution during the solidification of an alloy is presented.
The approach is based on a phase-field model including a phase variable, an orientation variable given by a quaternion,
the alloy composition, and a uniform temperature field. Energies and diffusion coefficients used in the model rely on
thermodynamic and kinetic databases in the framework of the CALPHAD methodology. The numerical approach is
based on a finite volume discretization and an implicit time-stepping algorithm. Numerical results for solidification and
accompanying coring effect in a Au-Ni alloy are used to illustrate the methodology.

1. Introduction

The microstructure of a material has a large influence
on its mechanical properties. An important computational
tool to simulate microstructure formation and evolution
is the phase-field model (PFM) (for a review, see e.g.
[1]). In PFM, the basic variable is a phase variable which
takes a specific value for each phase present in the simula-
tion. Transition regions between phases are described by
a smoothly varying value of that phase variable (diffuse
interface) such that the complete field can be easily dis-
cretized using an appropriate numerical method. While
this approach is used typically for two phases (such as
solid and liquid for instance), more phase variables can
be added to describe additional phases, or to distinguish
grains of different orientations (multi-phase field model).
Other fields may include alloy composition, temperature,
local elastic deformation, etc. PFM is a phenomenological
approach, and its parametrization determines bulk ener-
gies of each phase as a function of all the variables included
in the model, as well as interface energies that may de-
pend in particular on misorientation between two adjacent
grains. It is important to provide a realistic parametriza-
tion of such models if one expects to gain insights into
material properties. This is the reason why various recent
research efforts in the field targeting alloy properties have
been coupling PFM approaches to a physical database to
include known thermodynamic and kinetic properties. To
provide a realistic thermodynamic description of all phases
in a material, Grafe et al. proposed to employ thermody-
namic data from databases according to the CALPHAD
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method [2] for the multi-component extension to PFM.
They used interfaces to the Thermo-Calc and DICTRA
software to calculate Gibbs energies, chemical potentials
and diffusion matrices. Zhu et al. [3] used the CALPHAD
method to construct the local free energy in the Cahn-
Hilliard equations.

As an alternative to using a very large number of phase-
field variables to describe many grains of many different
orientations in multi-phase field models, various models
representing the local crystallographic orientation and its
evolution in time were introduced (orientation-field meth-
ods). Our model is closely related to the one introduced
by Pusztai et al. [4]. Instead of a multi-phase-field model,
we use a quaternion to describe the local grain orientation
in a crystal. We extend our recent work on this model [5]
to include modeling of alloys with composition-dependent
diffusion coefficients and free energies parametrized using
the CALPHAD methodology. Composition-dependent dif-
fusion coefficients are calculated following the formulation
proposed by Andersson and Agren [6]. We use the formu-
lation proposed by Eiken et al. [7] for the time-evolution
composition equations. Our treatment of binary alloys
at interfaces is based on the model proposed by Kim et
al. [8]. We assume a diffusion controlled time evolution.
For simplicity, anisotropy effects are neglected, but crystal
symmetries are taken into account. We limit our study to
a binary alloy, but the methodology is quite general and
can be applied directly to general multi-component alloys.

We apply our methodology to the study of coring in Au–
Ni alloys. Using an efficient parallel implementation of an
implicit time-stepping algorithm, we are able to study time
evolution of grain coarsening over a relatively long time
scale. To validate our model and verify our implementa-
tion, we compare 1-d results to those from the diffusion
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Figure 1: Coring between the liquid state and the fcc phase in Au–Ni
alloys. The red line located in the two phase region represents the
T0 curve associated with equal Gibbs energies for the two phases,
liquid and fcc.

controlled transformation (DICTRA) software [9, 10].

2. Coring in binary alloys

Since the conditions of “equilibrium” transformation are
in practice rarely realized because of the role of kinet-
ics in readjusting phase compositions during a transfor-
mation at each temperature increment, a so-called coring
phenomenon occurs, characterized by the development of
compositional gradient within grains. This is a general
phenomenon that has been observed for more than a cen-
tury in liquid-solid transformations with the prototypical
example of freezing in Cu–Ni, and also in solid-solid phase
transformations, as soon as the rates of diffusion in the two
phases involved in the transformation are different [11]. In
a liquid-solid transformation, since the rate of diffusion in
the solid phase is always much lower than in the liquid
phase, coring cannot be avoided, and homogeneous equi-
librium is for practical purposes only maintained in the
liquid state. Let us consider a portion of the equilibrium
phase diagram for a binary Au–Ni alloy, which is the alloy
selected for the present study, characterized by liquidus
and solidus lines delineating a two-phase liquid (L) + fcc
(F ) region as shown in Fig. 1.

In the present example homogeneous equilibrium is
maintained in the L phase but not in the F phase since the
rate of diffusion is much lower in the solid phase F , i.e.,
DL � DF . Under equilibrium conditions, let us consider
an alloy at the nominal composition AuNi3 fully equili-
brated at T1=1423 K with a proportion of L (Li) and F
(Fi) phases according to the lever rule. The F phase takes
from the L phase a disproportionately large amount of the
Ni component, causing the L phase to become richer in
Au as compared with the nominal alloy composition. As
temperature decreases, the trajectories of the composition
field for the L and F phases evolve along the (black) lines

indicated by single arrows in Fig. 1. As the temperature is
lowered, Ti > T1 > T2, the L phase becomes richer in Au
species and the F phase must also move toward higher Au
content. This can only happen by an increase in solid frac-
tion (which contains more Ni than liquid at equilibrium),
the preferential adsorption of Au from the L phase and the
diffusion of Au species into the F phase formed previously
at higher temperature. Because of the strong adjustment
in composition in the two phases that needs to occur, de-
parture from equilibrium is to be expected when ordinary
cooling rates are used. At the last temperature Tf that
indicates the bottom of the two-phase region at the nom-
inal composition AuNi3, at about 1269 K, the F phase is
richer in Ni than at equilibrium, and because of the slow
diffusion within the solid phase, a gradient of composition
within each F develops with a higher Ni-content than the
equilibrium composition in the center of the grains. Hence
a cored structure (i.e. exhibiting a gradient of composi-
tion) develops inside the F grains with an average compo-
sition that evolves along the red line (associated with Fc
labels) in Fig. 1, whereas the L matrix is compositionally
homogeneous.

Hence, the coring leads to the existence of a Ni-rich (Ni-
poor) region in the center (at the edge) of each F grain
region that grows in the L matrix as soon as the alloy en-
ters the two-phase region. Because grain growth develops
at a different rate than species diffusion, the coring struc-
ture is retained in the single-phase field in the region of
stability of the F phase. To achieve homogenization, the
F phase of Au–Ni has to be annealed at a temperature
that does not significantly alter the grain morphology and
grain-size distribution (that are both required for engineer-
ing applications), and at the same time at a temperature
high enough to allow diffusion to take place. Coring has
been observed in a large number of alloys during solidi-
fication since it occurs as soon as a significant difference
in diffusivities of the solute atoms exists between the ma-
trix and the nucleated phases [11], and also in solid phase
transformations as in the case of Ga–Pu [12] where the
diffusion in the bcc phase is orders of magnitude higher
than in the fcc phase resulting in a higher composition of
Ga in the center of the fcc grains during transformation.

3. Phase-field model

3.1. Model with local orientation

In our phase-field model, the state of a material is de-
scribed by state variables that express the phases present
in a material, as well as other properties such as compo-
sition of various atomic species, temperature, and local
grain orientation of a crystal structure at every point in
space. We typically consider a finite rectangular domain V
to model a representative fragment of a larger macroscopic
material with periodic boundary conditions.
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We begin by introducing the total free energy functional

F0 [φ, c,q, T ] ≡
∫
V

{
ε2φ
2
|∇φ|2 + f(φ, c, T )

+ Dq(φ, T )|∇q|+
ε2q
2
|∇q|2}dv, (1)

that expresses the total energy of a sample by integrating
a local free energy density over the whole sample. Except
for the last term, this expression is identical to the model
proposed by Pusztai et al. [4]. Here φ is a structural order
parameter indicating matter state (e.g., liquid or solid),
c is the composition of a particular species (here we as-
sume a binary material so that 1 − c is the composition
of the second species), and q ≡ (q1, q2, q3, q4) is a quater-
nion describing local crystallographic orientation, with the
normalization

4∑
i=1

q2
i = 1. (2)

T is the temperature which, in the following, is assumed
to be uniform across the computational domain.

The first term in the integrand of the energy functional
(1) yields an energy contribution at interfaces between the
phases identified by φ. The second term represents the
bulk energy density at every point in space as a function
of the local phase, composition, and temperature. The last
two terms yield energy contributions at interfaces between
regions of different orientations.

We assume that at every point in space we have the co-
existence of a two-phase mixture. We denote these phases
L (φ=0) and S (φ=1), by reference to the problem of a
mixture of liquid and solid phases, but they can be used
to represent other general two-phase problems.

The free energy density, f(φ, c, T ), in the second term of
the integrand of (1), is then defined by the phase mixture
rule

f(φ, c, T ) = (1− hφ(φ))fL(cL, T ) + hφ(φ)fS(cS , T )

+ ωφgφ(φ), (3)

where the interpolating polynomial

hφ(φ) = φ3
(
10− 15φ+ 6φ2

)
, (4)

introduced to have a smooth transition between phases,
satisfies hφ(0)=0, and hφ(1)=1. The function g is a “dou-
ble well” potential of the form

gφ(φ) = 16φ2(1− φ)2. (5)

fL and fS are the free energy densities of the L and S
phases. They depend on the variables cL and cS , that
denote the compositions of two locally coexisting phases
following the model proposed by Kim et al. [8]. They are
defined by φ and c according to the equations

c = [1− hφ(φ)]cL + hφ(φ)cS , (6)

µ̃(x, t) =
∂fS

∂cS

∣∣∣∣
cS=cS(x,t)

=
∂fL

∂cL

∣∣∣∣
cL=cL(x,t)

. (7)

Equation (7) expresses the condition of equal chemical po-
tentials.

The third term of the integrand of (1) is an orientational
free energy where

|∇q| =

(
4∑
i=1

(∇qi)2

)1/2

(8)

and

Dq(φ, T ) ≡ 2HTp(φ). (9)

H is a constant parameter, and p another interpolating
monotonic polynomial satisfying p(0)=0 and p(1)=1. We
use p(φ) = φ2. The final term in the integrand of (1) in-
volves |∇q|2, and prevents interfaces in q from becoming
too sharp and numerically difficult to represent on a fi-
nite mesh. The parameters εφ, ω,H, and εq control the
interface energy and width.

3.2. CALPHAD methodology

In the CALPHAD approach [13, 14, 15, 16, 17], the
Gibbs energy of each individual phase is defined, and
the model parameters are collected in a thermodynamic
database. It is the modeling of the Gibbs energy of in-
dividual phases and the coupling of phase diagram and
thermo-chemistry that make the CALPHAD method a
powerful technique in computational thermodynamics of
multi-component materials. Models for the Gibbs energy
are based on the crystal structure of the phases. For pure
elements and stoichiometric compounds, the most com-
monly used model is the one suggested by the Scientific
Group Thermodata Europe (SGTE) [18] which has the fol-
lowing form (for simplicity, the pressure dependence and
the magnetic contribution are not shown here),

Gm −HSER
m = a+ bT + cT ln(T ) +

∑
i

diT
i. (10)

The left-hand side of the above equation is defined as
the Gibbs energy relative to a standard element reference
state (SER), where HSER

m is the enthalpy of the element
m in its stable state at 298.15 K and 1 bar of pressure.
Coefficients, a, b, c, and di are the model parameters. The
SGTE data for the most common pure elements of the
periodic table have been compiled by Dinsdale [19].

For multi-component solution phases, the Gibbs energy
has the following general expression,

G = 0G+ idealGmix + xsGmix (11)

where 0G is the contribution from the mechanical mixing
of the pure components, idealGmix is the ideal mixing con-
tribution, and xsGmix is the excess Gibbs energy of mixing
due to non-ideal interactions.

In the present case of the binary Au-Ni alloy, a sim-
ple single sublattice model is considered for describing the
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liquid (L) and solid/fcc (S/F) phases Φ, hence the three
contributions to the total Gibbs energy reduce to [13]:

0GΦ = cAu
0GΦ

Au + cNi
0GΦ

Ni (12)
idealGmix = RT [cAu ln(cAu) + cNi ln(cNi)] (13)

xsGΦ
mix = cAucNi

∑
k

kLΦ
Au,Ni(cAu − cNi)k (14)

for Φ = L, S, where the molar Gibbs energy of mix-
ing is expressed by a Redlich-Kister expansion [20]. In
these expressions ci is the composition of the alloy for
species i, and the kLΦ

Au,Ni is the kth-order binary inter-
action parameter between Au and Ni species expressed
as a polynomial in temperature T (usually of first order).
Note that the excess Gibbs energy due to non-ideal contri-
butions is expressed within the Muggianu approximation
[21]. Data generated with the Thermo-Calc software 1

[22, 23] also provide the basis for more accurate predictions
of diffusion kinetics and ultimately TTT (temperature-
time-transformations) diagrams with the DICTRA soft-
ware [9, 22, 23, 24]. Note that the results of both equi-
librium solidification and Scheil-Gulliver simulations gen-
erated by Thermo-Calc correspond to upper and lower
bounds for the DICTRA results.

The thermodynamic data for the liquid state and fcc-
based structure of Au-Ni [25] are reported in Appendix D
with a complete version of the phase diagram, Fig. D.15,
whereas a detailed representation of it is shown in Fig. 1.
Note that besides a two-phase (liquid+fcc) region delin-
eated by the liquidus and solidus lines, this system exhibits
a fcc miscibility gap below 1089 K.

3.3. PFM coupling

CALPHAD databases provide Gibbs energy densities in
J/mol. We assume that molar volumes Vm are indepen-
dent of composition and define the various PFM free en-
ergy densities as the corresponding CALPHAD Gibbs en-
ergies divided by Vm To use the CALPHAD methodology
in our phase-field model for a binary alloy, we write the
free energy density for the phase Φ – solid (S) or liquid (L)
– as

fΦ(cΦ, T ) = 0fΦ(cΦ, T ) + idealfmix(cΦ, T )

+ xsfΦ
mix(cΦ, T ) (15)

where

0fΦ(cΦ, T ) = cΦ
0GΦ

A(T )

Vm
+ (1− cΦ)

0GΦ
B(T )

Vm
, (16)

idealfmix(cΦ, T ) =
RT

Vm
[cΦ ln(cΦ) + (1− cΦ) ln(1− cΦ)],

(17)

1The Thermo-Calc and DICTRA applications software are prod-
ucts of Thermo-Calc AB

and

xsfΦ
mix(cΦ, T ) = cΦ(1− cΦ)[0LΦ(T )

+ 1LΦ(T )(2cΦ − 1)

+ 2LΦ(T )(2cΦ − 1)2]V −1
m . (18)

The coefficients 0LΦ, 1LΦ and 2LΦ, that depend on tem-
perature, are given for the specific pair of alloy species.

For a phase value φ between 0 and 1, we use f as defined
in Eq. (3) with fS and fL as defined above (Eq. 15). The
compositions cS and cL are functions of φ and c, and Eq.
(6)—(7) need to be solved to evaluate expression (15) (see
Appendix C).

3.4. Governing equations for phase and orientation vari-
ables

To describe the time evolution of the phase and orien-
tation variables, we postulate the Allen-Cahn equations
[26]

φ̇ = −Mφ
δF

δφ
, (19)

q̇i = −Mq
δF

δqi
, i = 1, . . . , 4, (20)

where dots denote temporal derivatives. These equations
seek to minimize the energy (Eq. 1) over time subject to
the normality constraint on the quaternions (Eq. 2). Mφ

and Mq are mobility coefficients. We use a constant and
uniform mobility for the phase equation. For the orienta-
tion mobility on the other hand, we use

Mq(φ) = Mmin
q +m(φ)(Mmax

q −Mmin
q ), (21)

where Mmax
q varies with the problem and Mmin

q = 10−6,
i.e., very near zero, with m(φ) an interpolating monotonic
polynomial satisfying m(0) = 1 and m(1) = 0. We use
m(φ) = 1− φ3(10− 15φ+ 6φ2).

We use a Lagrange multiplier to convert the constrained
minimization problem to an unconstrained one [4, 5]. The
resulting evolution equations for φ and q are then

φ̇ = Mφ

(
ε2φ∇2φ− ωφg′φ − 2HTp′(φ)|∇q|

+ h′φ
[
fL(cL, T )− fS(cS , T )

]
− µ̃h′φ [cL − cS ]

)
, (22)

q̇i = Mq(φ)

{
∇ ·
(
εq +

Dq(φ)

|∇q|

)
∇qi

− qi∑
` q

2
`

∑
k

qk∇ ·
(
εq +

Dq(φ)

|∇q|

)
∇qk

}
,

i = 1, . . . , 4. (23)

The ordinary differential equations for composition are
described in the following subsection.

4



3.5. Multi-component diffusion equations

We consider a material made of n + 1 species. We de-
note the mole fraction of each species by ci, i = 0, . . . , n,
and by ~c the vector made of the components ci. If we as-
sume the condition of equal diffusion potential for locally
coexisting phases, one can calculate ~cS(~c, φ) and ~cL(~c, φ)
by solving a system of non-linear equations (see Eq. 6–7
for two components). We then follow Eiken et al. [7], and
solve the following diffusion equations

ċi = ∇
[
hφ(φ)DS

ij∇cS,j + (1− hφ(φ))DL
ij∇cL,j

]
, (24)

where the usual convention of summation over repeated
indexes is being used. To define the matrices of diffusion
coefficients in each phase, DS and DL, we follow Ander-
sson and Agren [6] under some simpler and less general
assumptions (see Appendix B). We suppose in particu-
lar that all the components have the same molar volume
Vm. According to Eq.(B.18), the diffusion matrix for phase
Φ = S,L is given by

DΦ = MΦT Φ, (25)

where

T Φ =
∂2fΦ

∂cΦ,icΦ,j
, (26)

and

MΦ
ki =

n∑
j=0

(δij − ci)(δjk − ck)cjΩ
Φ
j , (27)

where ΩΦ
j is the atomic mobility of component j in phase

Φ.
In contrast to (19) and (20), these equations evolve the

compositions ci, i = 0, . . . , n, conservatively. These equa-
tions are equivalent to [7]

ċi = ∇ [Dij∇cj
+ Dij(cL,j − cS,j)h′(φ)∇φ] (28)

with

D = hφ(φ)DS(T S)−1T + (1− hφ(φ))DL(T S)−1T (29)

and

Tij =
∂2f

∂cicj
, (30)

which were proposed in [8] and used in our previous work
[5]. The energy function f (Eq. 3) however is not an
explicit function of ~c. Thus it is more difficult to compute
the derivatives of f with respect to the component of ~c and
calculate T according to Eq. (30) than calculating T Φ.

3.6. Atomic mobilities

Since a single-sublattice model is considered for the dif-
fusion of Au and Ni in a Au–Ni matrix, the expression for
the activity Gibbs energies of Au and Ni takes a simpler

form. The composition-dependent atomic mobility for a
species i in a given phase Φ is given by

ΩΦ
i (~cΦ) = exp(−4Gi,Φ(~cΦ)/RT )/RT (31)

where 4Gi,Φ is parametrized as a Redlich-Kister expan-
sion

4Gi,Φ =

n∑
j=0

cjQ
j
i,Φ

+

n∑
j=0

∑
j<k≤n

cjck

[
m∑
r=0

rQj,ki,Φ(cj − ck)r

]
(32)

For example, in a binary alloy made of species A and B,
this expansion is often limited to (in a given phase)

4Gi = cAQ
A
i + cBQ

B
i + cAcB

0QA,Bi

+ cAcB(cA − cB)1QA,Bi . (33)

In this paper, we consider only binary alloys (n=1). If
we drop the phase index, and consider mobilities, compo-
sition, and energies in a given phase, we have for a binary
alloy, according to Eq. (B.13),

M00 = VmL
′′

00

=

1∑
j=0

(δ0j − c0)(δj0 − c0)cjΩj

= (1− c0)(1− c0)c0Ω0 + (−c0)(−c0)c1Ω1

= (1− c0)c0 [(1− c0)Ω0 + c0Ω1] (34)

as in [1], eq.(71).
We verify that in the limit of c0 → 0, we obtain

D = M00
∂2f

∂c2

∼ (1− c0)c0[(1− c0)Ω0 + c0Ω1]
RT

c0(1− c0)

∼ Ω0RT (35)

which is relation (B.12).

4. Numerical algorithm

To numerically discretize the system of phase-field equa-
tions given by (22), (23), and (24), our approach combines
a finite volume spatial discretization with an implicit time
integration method. We summarize here the numerical al-
gorithm used to solve the time evolution equations for our
phase-field model. More details can be found in a recent
publication [5] where a similar methodology is described
for a simpler model of alloys (quadratic model for free en-
ergies and composition independent diffusion coefficients).

We introduce a uniform grid on the physical domain V
and treat the independent variables φ, q, and c as cell-
centered quantities with respect to this grid. The finite
volume discretization yields a conservative time evolution
for the concentration variable.
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The spatially discretized model can be written as a sys-
tem of ordinary differential equations

ẏ(t) = f(t, y(t)), y(0) = y0, (36)

where

y(t) ≡

 φ(t)
q(t)
c(t)

 (37)

and where the components of f are the spatially discretized
right-hand sides of (22), (23), and (24) respectively.

The time evolution equations are integrated using
variable-order, variable-step backwards difference formu-
las (BDFs). To preserve the norm of q during the time
integration, it is combined with a coordinate projection.
At each discrete time tn, the use of a BDF results in a
non-linear system to be solved for the discrete solution yn

at time tn

G(yn) = h−1
n

k∑
i=0

σn,iy
n−i − f(tn, yn) = 0, (38)

where hn is the current time step, k is the integration
order, and the σn,i are the BDF coefficients.

The non-linear system (38) is solved using a Newton-
Krylov algorithm where the Jacobian is computed by finite
differences. The Jacobian system is solved using a Gener-
alized Minimum Residual (GMRES) iteration scheme [27]
with a diagonal block preconditioner. As preconditioner,
we employ a multigrid preconditioned conjugate-gradient
solver from the Hypre library [28] for each diagonal block.

For the diagonal block corresponding to the time evolu-
tion equation for c, we use a preconditioner for the GM-
RES solver based on Eq. (28) as in [5]. This equation is
equivalent to Eq. (24) before discretization, and is more
appropriate than (24) since it explicitly involves ∇c on the
right hand side. However, we replace D, Eq. (29), with
the simpler approximation

D̃ = h(φ)DS + [1− h(φ)]DL. (39)

In our phase-field code AMPE, we employ the general-
purpose integrator CPODES [29] to integrate the sys-
tem (36). CPODES solves systems of ordinary differen-
tial equations with invariants using the combination of
BDF, coordinate projection, and Newton-Krylov type al-
gorithms summarized above. CPODES is a time inte-
grator with coordinate-projection capability based on the
CVODES integrator, which is part of the Sundials package
[30].

Crystal symmetries are taken into account when evolv-
ing quaternion orientations and computing quaternion dif-
ferences. This is done using the algorithm described in
Appendix A.

To calculate the compositions in each phase at each step
of the algorithm, the system of non-linear equations (6—
7) is solved using a damped Newton solver (see Appendix
C). Some authors avoid solving these equations exactly

at every step, considering it time consuming [31]. In an
implicit time-stepping algorithm, since fewer evaluations
of the right hand-side are required, this is not so expensive
and is done at every step. Also, unlike the methodology
proposed by Grafe et al. [2], for instance, our solver is
directly implemented in our code, and no coupling to an
external software such as DICTRA is necessary.

5. Numerical results

We use the model described above and its implemen-
tation to simulate coring during solidification in a Au–Ni
alloy. In this section, we choose to plot the composition
c1, the mole fraction of Ni in the alloy, and c refers to that
composition.

5.1. Phase-field model and numerical parameters

Equilibrium bulk energies and diffusion coefficients are
based on current knowledge of the physical properties of
the Au–Ni alloy and its phase diagram. For the face-
centered cubic (fcc) phase, we use diffusional mobilities
as assessed by Wang et al. [32]. For the liquid phase, we
refer to Ref. [33] to calculate the mobility parameters for
the Au–Ni system according to:

QJI = αJ +RT ln(βJI ) (40)

with

αJ = −R
(
0.17TMelt

J [16 +K]
)

(41)

βJI = (8.95− 0.0734ZJ) · 10−8 dJ
dI

(42)

where ZJ is the atomic number for species J (28 and 79
for Ni and Au, respectively), dJ is the Goldsmith diameter
(0.2884 and 0.2492 nm for Au and Ni respectively), TMelt

J

is the melting temperature (1338 and 1726 K for Au and
Ni, respectively), and K=3 by reference to the solid phase
(here fcc). Model coefficients for mobilities are given in
Appendix E.

For the description of the alloy energetics, we use CAL-
PHAD thermodynamic data (see Appendix D). Fig. 2
illustrates the energy landscape for the independent vari-
ables φ and c at T=1450 K. The equilibrium compositions
for this temperature are ceqL =0.742 for the liquid phase
and ceqS =0.904 for the solid (fcc) phase. We assume a mo-
lar volume independent of phase and composition. We use
Vm= 4.8 · 10−5m3/mol.

There remains a few parameters to setup to fully char-
acterize our model. First, the mobilities Mφ and Mmax

q are
determined by assuming a diffusion-controlled process, and
by simulating a solid single grain growth (positive growth
with decreasing temperature) embedded in a liquid ma-
trix. These mobilities should be large enough to reach a
diffusion-controlled regime (time evolution independent of
mobilities), but not too large to avoid slowing down the
numerical scheme used for time integration. Note that
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Figure 2: Bulk free energy as a function of phase (0=L, 1=S) and
Ni at.% composition at T=1450 K (initial temperature for 2-d sim-
ulations of section 5.4). Units: pJ/µm3.

for initial conditions given by non-equilibrated grains with
sharp interfaces, the initial steps will still depend on the
choice of these mobilities. Thus it is important to start
from an equilibrated grain at the initial temperature to
carry out this simulation. The values obtained for Mφ

and Mmax
q are listed in Table 1.

The remaining parameters (εφ, εq, ω and H) are linked
to solid-solid and solid-liquid interface energies and width.
These four parameters determine all the interface energies
for all the possible interfaces between two solid grains of
various orientations. Therefore there are not enough tun-
ing parameters to reproduce exactly all the interface ener-
gies between various pairs of grains if those were known.
Since we are not aware of any interface energy data for Au–
Ni, we limit our tuning to simply determine values leading
to realistic energies. The main challenge is to find param-
eters that lead to “wet” interfaces — for which φ goes to
zero in the middle of the interface — for typical grain mis-
orientations, with proper numerical properties (reasonable
interface width) and reasonable energies. The parameters
we use are listed in Table 1.

εφ 0.2 (pJ/µm)1/2

εq 0.25 (pJ/µm)1/2

ω 0.4 pJµm−3

Mφ 10.0 s−1pJ−1

Mmax
q 1.0 s−1pJ−1

H 0.08 pJK−1µm−1

Table 1: Parameters for Au–Ni PFM simulations.

For spatial numerical discretization, we use a mesh spac-
ing h=0.0125 µm for the 2-d and 3-d numerical simulations
presented in this paper. The bi-layers simulation in Sec-
tion 5.3 will justify that choice.

5.2. Verification

To verify our implementation of the model described
above, we run 1-d calculations to be compared with sharp-
interface results from the DICTRA software [9, 22, 23, 24].
A similar benchmark was used by other authors [2, 34]
to verify their multi-phase-field model. We run a solidifi-
cation simulation, starting from a small solid (fcc) grain

within a liquid environment at 1423 K at a nominal alloy
composition of 75 at.% Ni. Before lowering the tempera-
ture, the time-evolution equations are integrated at a fixed
temperature until both the solid grain and the liquid envi-
ronment reach their respective equilibrium compositions at
this temperature (i.e., cLNi=0.7169 and cSNi=0.8918), and
the origin of time is set up once equilibration is achieved.
In the PFM approach, the smoothly varying phase variable
at the solid-liquid interface leads to a diffused interface, the
width of which is controlled by εφ. Then the temperature
is uniformly lowered across the system at a constant cool-
ing rate of -5 K/s. The total sample size is chosen to be
3.2 µm. In Fig. 3, we show the Ni composition profile
along the 1-d structure for various times up to 28 s (i.e.,
down to a temperature of 1283 K). To start the DICTRA
calculations, it is assumed that the thicknesses of the fcc
and liquid regions are in accordance with the equilibrium
data at 1423 K, i.e., 0.606137 and 2.593863 µm for the
solid (fcc) and liquid regions, respectively.

As clearly shown in Fig. 3 there is excellent agreement
between the DICTRA and 1-d PFM results, except for the
minor differences associated with the diffuse and sharp in-
terface in the case of PFM and DICTRA, respectively.
Hence the results on position of the solid-liquid interface
and interface velocity as functions of time are expected
to be almost the same in both approaches. Note that
for PFM to approximate well a sharp interface, we used
εφ = 0.1 and ω = 1.6 for this verification test. With the
parameters of Table 1, the interface width would be four
times wider and its velocity about 4% larger.

An enhancement of the Ni composition in the solid re-
gion away from the solid-liquid interface is observed when
compared to equilibrium results (see Fig. 3), and this cor-
ing phenomenon increases with time, i.e., with a decrease
in temperature, as expected. Other DICTRA calculations
were performed at various cooling rates, and Fig. 4 shows
the interface position and its velocity as functions of tem-
perature for dT/dt=-1, -5, -25, -50, -100 K/s. As expected
the velocity increases whereas the fcc grain size decreases
with the cooling rate. Note that for the selected nomi-
nal alloy composition, the location of the solidus line is at
about 1269 K (see Fig. 1). For this set of data we define a
quantitative measure of coring in a grain by the following
coring factor

δc =

[
1

Vgrain

∫
grain

|c− c̄|2 dv
]1/2

(43)

where c̄ denote the average value of c in the grain, and
Vgrain is the grain volume. A grain is identified as a con-
nected region of the computational domain for which φ >
0.85. Note that a different expression was proposed by
Hu et al. [35] to quantify coring in a sample that takes
an average over the whole sample, and does not take into
account individual grains.

The bottom of Fig. 4 shows this coring as a function of
temperature for various quenching rates. As expected the
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Figure 3: Comparison between DICTRA (solid lines) and 1-d PFM
(dashed lines) results on coring in AuNi3 starting from 1423 K (in
the two-phase region, liquid+fcc, see Fig. 1) and with a cooling rate
dT/dt=-5 K/s. Also indicated in the figure is the mole fraction of
Ni versus distance assuming thermodynamic equilibrium (red dashed
line and circles). As an example at 1303 K (i.e., corresponding to a
time of 24 s), the black double-arrow solid line indicates the gradi-
ent of Ni composition (i.e., the amount of coring) compared to the
equilibrium composition indicated by the red dashed line.

coring increases with the quenching rate although clearly
the increase in coring is limited by the thermodynamic
driving force as the quenching rate increases.

5.3. Bi-layer simulations

In general, the interface energy depends not only on
the misorientation between two adjacent grains, but also
on the normal to the interface. In our model, the interface
energy is determined by only four parameters, ε, ω, H, and
εq, and does not depend on the normal to the interface.
Within these constraints, a sensible option is to tune those
parameters to obtain reasonable values for the interface
energy over the range of possible misorientations. This is
typically sufficient considering the experimental values for
those energies are often difficult to obtain.

To study and fully characterize interfaces in our model,
we run simulations for a 1-d system made of two solid
grains with different crystal orientations and periodic
boundary conditions (see Fig. 5). We select a nominal
composition of 75 at. % Ni/25 at. % Au and a temperature
of 1250 K (in the solid region of the phase diagram). We
run the simulations until equilibrium is reached through-
out the system for various misorientation angles between
the two adjacent grains. No rotation of grains occurs since
Mq is set to zero in the solid phase, but the solid grains fill
up space except for the diffuse interface between the two
grains. In Fig. 6, we plot the equilibrium values of the
variables in our model, φ, c, and the first two components

Figure 4: Interface position (top) and velocity (middle), and coring
δc versus temperature (or time) for various cooling rates (-1, -5, -10,
-25, -50, and -100 K/s) according to DICTRA calculations in the
case of AuNi3 during quenching in the two-phase fcc+liquid region
(between the starting temperature of 1423 K and the final tempera-
ture of 1269 K). In the top figure, the initial position of the fcc-liquid
interface at 1423 K is taken as zero of position, and the interface po-
sition according to equilibrium composition (red solid line) is also
reported for comparison.

of q, as functions of the position with respect to one of
the interfaces, x = 0 denoting the middle of the interface,
for a small and a large misorientation. In both cases, the
middle of the interface is fully liquid and c tends towards
the liquid equilibrium composition in that region. As ex-
pected, the width of the interface becomes wider for larger
misorientation.

In Fig. 7, we plot the various components making up the
interface energy as functions of the angle between the two
grains, as well as the system total grand potential (GP)

Ω [φ, µ,q, T ] = F [φ, c,q, T ]−
∫
V

µc dv (44)

where µ = ∂f/∂c. The total GP is the appropriate value
to compare energies between various systems (various mis-
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Figure 5: Two adjacent solid grains of different orientations in a 1-d
arrangement with periodic boundary conditions.

Figure 6: Profile of relevant variables (φ, q1, q2, c) through bi-layer in-
terface after reaching equilibrium at T=1250 K, in the case of a small
misorientation (11.25 deg., top) and a large misorientation (45.0 deg.
bottom).

orientations) in this context (see [36]). As expected, its
value monotonically increases with the misorientation an-
gle. The energy is plotted for a mesh spacing h=0.0125
µm, the one used for 2-d and 3-d simulations, and for a
finer mesh spacing h=0.00625 µm. This shows that while a
mesh spacing of h=0.0125 µm leads to results slightly dif-
ferent than those obtained with a finer mesh spacing, the
energies are already sufficiently accurate for our purpose.

5.4. 2-d Microstructure formation during cooling process

We carry out a series of 2-d simulations of solidifica-
tion in AuNi3, and follow the microstructure formation
during the cooling process. The simulations begin in the
two-phase region at T=1450 K and c=0.75. For all the
simulations, the initial state is defined by a certain num-
ber (144) of solid seeds at their equilibrium composition
(c = ceqS ) embedded in a liquid matrix also at equilibrium
composition (c = ceqL ) (see Figs. 8 and 11). Our simula-

(a) Various terms composing the interface energy.
Eφ refers to the second-order term in ∇φ in the en-
ergy functional, see Eq. (1), while Eq1 and Eq2 refer
to the first- and second-order terms in q respectively.

(b) Total Grand-potential (GP), Eq. (44)

Figure 7: Interface energy terms and GP as functions of misorienta-
tion for resolution used in numerical applications (h=0.0125 µm) and
for a resolution twice as fine (h=0.00625 µm), at a fixed temperature
(T=1250 K).
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Figure 8: Initial conditions and color scheme for phase value φ in 2-d
solidification simulations: solid grains (red) embedded in the liquid
matrix (blue). The size of the domain is 25.6 µm × 25.6 µm.

tions are performed in a square domain 25.6 µm × 25.6
µm with periodic boundary conditions. The position of
the seeds are defined by adding a random displacement to
a 12 × 12 uniform distribution. The quaternion associated
with each seed is randomly selected on the 4-d hypersphere
of unit quaternions. The computational domain is numer-
ically discretized with a uniform mesh 2048 × 2048. The
initial number of seeds is chosen small enough so that their
sizes are large enough to be stable during the initial time
steps, in particular when interfaces evolve from the initial
sharp interfaces into smoother interfaces numerically well
described on the mesh.

We investigate the effect of the cooling rate on the re-
sulting microstructures once a fully solid phase is reached
at T=1150 K. Fig. 9 shows the microstructures obtained
for dT/dt=-10 K/s, dT/dt=-25 K/s, and dT/dt=-100 K/s.
Figure 9 also shows the orientation field (quaternion) for
the microstructure obtained with dT/dt=-100 K/s, where
the four components of the quaternions have been mapped
into a RGB color map. For a fast cooling rate dT/dt=-100
K/s, the final number of grains (142) is almost identical to
the initial number of grains. For a cooling rate 10 times
slower, dT/dt=-10 K/s, the final number of grains (26) is
much smaller. Fig. 10 shows the evolution of grain sizes
with time for these two cases. The difference is due to Os-
wald ripening: various grains grow for a very short time
and then disappear early on in the process. For faster
cooling rates, grains grow faster, and many more grains
can grow fast enough to overcome Oswald ripening. Fig-
ure 12 shows composition inhomogeneities (coring) in the
microstructures formed during the cooling process.

In Fig. 13, we plot the coring factor δc (Eq. 43) as a
function of time for each grain for the simulations with
dT/dt=-10 K/s and dT/dt=-100 K/s. The slower cooling
rate leads to a larger coring factor as larger grains with
composition gradients are formed.

A determinant factor in these simulations is the ratio

(a) dT/dt=-10 K/s after 30 s.

(b) dT/dt=-25 K/s after 12 s.

(c) dT/dt=-100 K/s after 3 s.

Figure 9: Phase φ value in microstructures obtained when reaching
T=1150 K for various cooling rates (φ=0 for liquid, blue, φ=1 for
solid, red). For the fastest cooling rate (dT/dt=-100 K/s), we show
the quaternion field instead of φ (c).
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Figure 10: Size of each solid grain as a function of time for dT/dt=-10
K/s (top) and dT/dt=-100 K/s (bottom). The distribution of grains
according to their sizes at the end of the simulation is shown on the
right of each plot. Note the different scales used for the y-axis.

Figure 11: Initial composition field and color scheme for 2-d cooling
simulations (same simulations as in Fig.9). The size of the domain
is 25.6 µm × 25.6 µm.

(a) dT/dt=-10 K/s after 30 s.

(b) dT/dt=-25 K/s after 12 s.

(c) dT/dt=-100 K/s after 3 s.

Figure 12: Composition field obtained when reaching T=1150 K for
various cooling rates (a)-(c) (same simulations as in Fig. 9). The
size of the domain is 25.6 µm × 25.6 µm.
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Figure 13: Coring (δc), given by Eq. (43), vs. time for dT/dt=-10
K/s (top) and dT/dt=-100 K/s (bottom). The distribution of grains
according to coring at the end of the simulation is shown on the right
of each plot.

between the cooling rate and the diffusion rate in the solid
phase. A simulation with dT/dt=-100 K/s would lead to
the same results as those obtained with dT/dt=-10 K/s
if the diffusion coefficient in the solid phase was 10 times
larger and the mobilities were also 10 times larger (factor
10 in each time evolution equation). From that point of
view, slow diffusion in the solid phase is responsible for the
formation of larger grains and more coring.

5.5. 3-d Microstructure formation during cooling process

To illustrate the capability we have developed, we also
carry out 3-d simulations performed in a cubic domain
3.2 µm × 3.2 µm × 3.2 µm, with periodic boundary con-
ditions. The domain is discretized with a uniform mesh
256 × 256 × 256, and the initial conditions are set up at
T=1450 K with 27 solid grains at equilibrium composition.
While 3-d calculations are much more computer intensive,
we can still study solidification in AuNi3 over periods of
time of the order of seconds with an efficiently parallelized
code. A simulation of 3 seconds of time evolution with a
cooling rate dT/dt=-100 K/s requires 19,300 steps. This
takes about 48 hours wall-clock time on 512 processors (32
nodes of Intel Xeon E5-2670 InfiniBand cluster). Figure 14
shows the composition and the quaternion fields obtained
after decreasing the temperature for 3 s. One can observe
that in 3-d, initial small grains are even less stable than in
2-d and need to be quite large to survive Oswald ripening
during the initial steps.

Figure 14: 3-d simulations: composition (top) and quater-
nion/orientation (bottom) fields obtained when reaching T=1150 K
for dT/dt=-100 K/s. The domain size is 3.2 µm × 3.2 µm × 3.2 µm.
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6. Conclusion

In this paper, we presented an application of phase-field
modeling to the study of alloys solidification in real ma-
terials. Our numerical scheme is based on a finite vol-
ume discretization of the phase-field equations, including a
phase variable, the alloy composition, and a 4-components
quaternion variable to describe grain orientations. An
adaptive implicit time-stepping algorithm is used to accu-
rately evolve these fields in time. An algorithm is proposed
to take into account crystal symmetry when comparing
grain orientations defined by quaternions. This numerical
approach combined with PFM parameters obtained from
realistic data given by the CALPHAD methodology ap-
pears to be an effective approach to study solidification
and grain structure formation in alloys. The approach
scales well with the number of grains, thanks to the use of
quaternions that does not require an increase in the num-
ber of variables with problem size. It also parallelizes well
and allows fast simulations on large parallel supercomput-
ers.

We applied our methodology to the particular case of a
binary alloy, Au–Ni, for which we provide a complete set of
parameters. Simulations in 1-d, 2-d and 3-d are presented.
1-d PFM results are in excellent agreement with DICTRA
calculations. A detailed analysis of the behavior of the
various variables at grain interfaces is also provided. Sim-
ulations of solidification are carried out by reducing the
value of a uniform temperature field for initial conditions
with random solid seeds. Numerical evidence of coring in
this system is obtained for various cooling rates, and the
major influence of the cooling rate and coring on the final
microstructures is demonstrated.
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Appendix A. Quaternion differences and crystal
symmetry

The mapping from unit quaternions to rotations is 2-
to-1: two quaternions on opposite sides of the 4-d hyper-
sphere are equivalent. Additionally, crystal structure sym-
metries imply that several other quaternions are equiv-
alent. Cubic crystals (i.e., fcc) have 24 symmetrically
related orientations that are physically indistinguishable.
Therefore, taking into account the 2-to-1 ambiguity, there
are 48 equivalent quaternions on the 4-d hypersphere.

When comparing two quaternions in calculating finite
differences in our numerical scheme, we need to find the
minimum difference that accounts for these equivalent
quaternions. In practice, instead of searching all 48 possi-
ble equivalent quaternions, we keep track of the rotations
one needs to apply to each cell to obtain an equivalent
quaternion closest to the one in the adjacent discretiza-
tion cell (quaternion values are defined at cell centers). In
general, these rotations do not vary in time, as quater-
nions vary smoothly in space, differing by small amounts
between neighboring cells, which persist during time evo-
lution. Thus these rotations need to be computed only
once at the beginning and stored for the duration of the
simulation.

During a simulation it is still possible to find two neigh-
boring grains having quaternion orientations differing by
more than the maximal difference allowed by symmetry.
This is possible because the diffuse interface involves sev-
eral grid points, and the difference between quaternion ori-
entations of two grains is made of the sum of the differences
over the grid points in the diffuse interface region. This
can come about for instance, when a grain C is squeezed
between two other grains A and B, and disappears. This
leaves a quaternion difference between A and B larger than
allowed by symmetry, while the differences between C and
A or C and B were smaller than the maximum allowed by
symmetry.

We handle this situation with the following algorithm.
At regular time intervals, we count the number of grains.
A grain is defined by a compact domain where φ is above
a certain threshold value (solid). If the number of grains
counted is smaller than in the previous count, we extend
the value of the quaternions in solid grains into the liquid
regions by setting q in liquid cells to the value of the closest
solid grain, as if all the grid points were in the solid phase.
This produces sharp interfaces in orientation, allowing us
to recalculate the rotations at each cell interface based on
the new values of the quaternions. This ensures that the
symmetry rotation between two adjacent grains is properly
computed. Then we relax the quaternion field by evolv-
ing Eq. (23), while all the other variables are kept frozen.
Since accuracy in time integration for this relaxation pro-
cess is not important, this process of relaxation can be sped
up by first applying a local cell averaging scheme several
times in the liquid region to smooth out the quaternion
discontinuities. Tolerance on time integration can also be
relaxed. Once this relaxation process is terminated, the
regular time evolution is restarted. This process can be
considered as an alternative to the algorithm proposed in
[37] for simple angles in 2-d.

Appendix B. Multi-component diffusion

Following Andersson and Agren [6] under some simpler
and less general assumptions, we consider an alloy made
of n+ 1 species. We suppose all the components have the
same molar volume Vm, and denote the mole fraction of
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each species by ck, k = 0, . . . , n. The mole fractions (or
compositions) satisfy

n∑
i=0

ck = 1. (B.1)

Compositions evolve in time according to diffusion equa-
tions of the form

∂ck
∂t

= −Vm∇ · Jk (B.2)

where Jk are fluxes. In the linear theory, we express the
fluxes as linear functions of the driving forces. If the driv-
ing forces are chemical potentials, we have

Jk = −
n∑
j=0

Lkj∇µj (B.3)

where the Lkj are phenomenological parameters that re-
late fluxes to driving forces, and

µi =
∂g

∂ci
(B.4)

is the chemical potential of component i associated with
the free energy

g(c0, c1, . . . , cn). (B.5)

The fluxes must satisfy

n∑
k=0

Jk = 0 (B.6)

independently of the frame of reference (which could be
moving with a velocity v). By eliminating cn using (B.1)
and enforcing (B.6) independently of the frame of refer-
ence, Andersson and Agren [6] obtain

Jk = −V −1
m

n−1∑
j=0

Dn
kj∇cj (B.7)

where
Dn
kj = Dkj −Dkn, (B.8)

Dkj = Vm

n∑
i=0

L
′′

ki

∂[µi − µn]

∂cj
, (B.9)

L
′′

ki =

n∑
j=0

n∑
r=0

(δir − ci)(δjk − ck)Ljr, (B.10)

and L is a diagonal matrix

Lkj = ckΩkδkjV
−1
m . (B.11)

The scalar parameter Ωk is a mobility directly related
to the tracer diffusivity D∗k through Einstein’s relation

D∗k = RTΩk. (B.12)

Equation (B.10) can be written more simply as

L
′′

ki =

n∑
j=0

(δij − ci)(δjk − ck)cjΩjV
−1
m . (B.13)

Now if we eliminate cn using (B.1), we can write

f(c0, c1, . . . , cn−1) = g

(
c0, c1, . . . , cn−1, 1−

n−1∑
i=0

ci

)
(B.14)

We then have

µ̃i =
∂f

∂ci
=
∂g

∂ci
− ∂g

∂cn
= µi − µn (B.15)

and

∂2f

∂cicj
=

1

∂cj

(
∂g

∂ci
− ∂g

∂cn

)
− 1

∂cn

(
∂g

∂ci
− ∂g

∂cn

)
=

1

∂cj
(µi − µn)− 1

∂cn
(µi − µn) . (B.16)

Thus Eq.(B.8) becomes

Dn
kj = Dkj −Dkn = Vm

n∑
i=0

L
′′

ki

∂2f

∂cicj
(B.17)

which can be written in the more compact matrix notation

Dn = VmL
′′
T (B.18)

with

Tij =
∂2f

∂cicj
. (B.19)

Appendix C. Non-linear system of equations to
determine compositions in each
phase

For a binary alloy composed of species A and B, we have
free energy densities modeled in each phase Φ, liquid (L)
and solid (S), by Eqs. (15)–(18).

The first derivative of f with respect to composition of
A in phase Φ, cΦ, is given by

Vm
∂fΦ

∂cΦ
= RT [ln cΦ − ln(1− cΦ)]

+ (1− 2cΦ)[
LΦ

0 + LΦ
1 (2cΦ − 1) + LΦ

2 (2cΦ − 1)2
]

+ cΦ(1− cΦ)
[
21LΦ + 42LΦ(2cΦ − 1)

]
+ Vm[fΦ

A (T )− fΦ
B (T )]. (C.1)

Let

ξΦ = (1− 2cΦ)[
0LΦ + 1LΦ(2cΦ − 1) + 2LΦ(2cΦ − 1)2

]
+ cΦ(1− cΦ)

[
21LΦ + 42LΦ(2cΦ − 1)

]
+ Vm[fΦ

A (T )− fΦ
B (T )], (C.2)
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so that (C.1) becomes

Vm
∂fΦ

∂cΦ
= RT ln

cΦ
1− cΦ

+ ξΦ. (C.3)

Using (7), we get

cS(1− cL) = exp

(
ξL − ξS
RTV −1

m

)
(1− cS)cL. (C.4)

Together with (6), we have a non-linear system of two
equations. The two unknowns, cL and cS , can be solved
by a suitable root-finding algorithm to enable calculation
of the free energy densities fL and fS .

Appendix D. Au–Ni thermodynamic data

Figure D.15: Au-Ni phase diagram according to CALPHAD assess-
ment of the thermodynamic properties.

The phase diagram of Au–Ni is shown in Fig. D.15. The
CALPHAD description of the Gibbs energies for the liquid
and solid (fcc) phases of Au–Ni are given in Tables D.2,
D.3 and D.4, according to the assessment results discussed
in [25]. Energies are expressed in J/mol and temperature
T in Kelvin. The Gibbs energies of the pure elements are
from [19] as given by the SSOL2 database of Thermo-Calc
[22, 23].
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T [K] 298.15 ≤ T ≤ 933.51 ≤ T ≤ 1337.58 ≤ T ≤ 1735.8 ≤ T ≤ 3000
Liquid

a 5613.147 -81023.261 326614.987 413.343
b 97.446385 1012.21732 -2025.7579 155.893158
c -22.75455 -155.6947 263.2523 -30.9616
d2 -0.00385924 0.08756015 -0.11821685 0.
d3 3.79625e-07 -1.1518713e-05 8.923845e-06 0.
d−1 -25097. 10637210. -67999850. 0.

Solid (fcc)
a -6938.853 -93575.261 314062.987 -12138.657
b 106.830495 1021.60143 -2016.37379 165.277268
c -22.75455 -155.6947 263.2523 -30.9616
d2 -0.00385924 0.08756015 -0.11821685 0.
d3 3.79625e-07 -1.1518713e-05 8.923845e-06 0.
d−1 -25097. 10637210. -67999850. 0.

Table D.2: CALPHAD parametrization of the Gibbs energies of Au in liquid and solid (fcc) phases as functions of temperature T , with
HSER
Au =6016.6 and SSERAu =47, see Eq. (10). Units: J/mol.

Appendix E. Au–Ni kinetic data

The CALPHAD description of the mobilities for the liq-
uid and fcc phases of Au–Ni are given according to the
description discussed in section 3.6 and at the beginning
of section 5.1. The parameters used to calculate the diffu-
sion coefficients in Au–Ni in Eq. (33) are given in Table
E.5. in the form Q = α + RT ln(β) where α is given in
Kelvin, and β is given in m2/s with implicitly T in Kelvin
and the gas constant R=8.31451 J/mol·K.
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